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I guess you all know about t apeworms . . .  ? 
Good. Well, what I turned loose in the net 
yesterday was t h e . . ,  father and mother  of  
all tapeworms . . . .  
My newest -my masterpiece-breeds by it- 
s e l f . . . .  
By now I don' t  know exactly what there is 
in the worm. More bits are being added 
automatically as it works its way to places 
I never dared guess existed . . . .  
And-no ,  it can't  be killed. It's indefinitely 
self-perpetuating so long as the net exists. 
Even if one segment of  it is inactivated, a 
counterpart  of  the missing portion will re- 
main in store at some other station and the 
worm will automatically subdivide and 
send a duplicate head to collect the spare 
groups and restore them to their proper 
place. 

- - J o h n  Brunner, The Shockwave Rider 
Ballantine, New York, 1975 

1. Introduction 

In The Shockwave Rider, J. Brun- 
ner developed the notion of an om- 
nipotent " tapeworm" program run- 
ning loose through a network of  
compute r s - - an  idea which may 
seem rather disturbing, but which is 
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SUMMARY: The "worm"  programs were an experiment in 
the development of distributed computations: programs that 
span machine boundaries and also replicate themselves in 
idle machines. A "worm"  is composed of multiple "seg- 
ments," each running on a different machine. The underlying 
worm maintenance mechanisms are responsible for maintain- 
ing the wormmfinding free machines when needed and rep- 
licating the program for each additional segment. These tech- 
niques were successfully used to support several real appli- 
cations, ranging from a simple multimachine test program to 
a more sophisticated real-time animation system harnessing 
multiple machines. 

also quite beyond our current capa- 
bilities. The basic model, however, 
remains a very provocative one: a 
program or a computation that can 
move from machine to machine, har- 
nessing resources as needed, and rep- 
licating itself when necessary. 

In a similar vein, we once de- 
scribed a computational  model based 
upon the classic science-fiction film, 
The Blob: a program that started out 
running in one machine, but as its 
appetite for computing cycles grew, 
it could reach out, find unused ma- 
chines, and grow to encompass those 
resources. In the middle of  the night, 
such a program could mobilize 
hundreds of  machines in one build- 

C R  Categories and Subject Descriptors: C.2.4 
and C.2.5 [Computer Comnmnication Net- 
works]: Distributed Systems and Local Net- 
works. 
General  Terms: Design, Experimentation. 
Additional Key Words and Phrases: multi- 
machine programs, Ethernet local network, 
Pup internetwork architecture. 
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ing; in the morning, as users re- 
claimed their machines, the "blob" 
would have to retreat in an orderly 
manner,  gathering up the interme- 
diate results of  its computation. 
Holed up in one or two machines 
during the day, the program could 
emerge again later as resources be- 
came available, again expanding the 
computation. (This affinity for night- 
time exploration led one researcher 
to describe these as "vampire  pro- 
grams.") 

These kinds of  programs repre- 
sent one of  the most interesting and 
challenging forms of  what was once 
called distributed computing. Unfor-  
tunately, that particular phrase has 
already been co-opted by those who 
market  fairly ordinary terminal sys- 
tems; thus, we prefer to characterize 
these as programs which span ma- 
chine boundaries or distributed com- 
putations. 
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In recent years, it has become 
possible to pursue these ideas in 
newly emerging, richer computing 
environments: large numbers of  
powerful computers, connected with 
a local computer  network and a full 
architecture of  internetwork proto- 
cols, and supported by a diverse set 
of  specialized network servers. 
Against this background, we have 
undertaken the development and op- 
eration of several real, multimachine 
"worm" programs; this paper  reports 
on those efforts 

In the following sections, we de- 
scribe the model for the worm pro- 
grams, how they can be controlled, 
and how they were implemented. We 
then briefly discuss five specific ap- 
plications which have been built 
upon these multimachine worms. 

The pr imary focus of  this effort 
has been obtaining real experience 
with these programs. Our work did 
not start out specifically addressing 
formal conceptual models, verifiable 
control algorithms, or language fea- 
tures for distributed computation, 
but our experience provides some 
interesting insights on these ques- 
tions and helps to focus attention on 
some fruitful areas for further re- 
search. 

2. Building a Worm 
A worm is simply a computation 

which lives on one or more machines 
(see Figure 1). The programs on in- 
dividual computers are described as 
the segments of  a worm; in the sim- 
plest model each segment carries a 
number  indicating how many total 
machines should be part of  the over- 
all worm. The segments in a worm 
remain in communication with each 
other; should one segment fail, the 
remaining pieces must find another 
free machine, initialize it, and add it 
to the worm. As segments (machines) 
join and then leave the computation, 
the worm itself seems to move 
through the network. It is important 
to understand that the worm mech- 
anism is used to gather and maintain 
the segments of  the worm, while ac- 
tual user programs are then built on 
top of  this mechanism. 

Initial construction of  the worm 
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An Ethernet local network 
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Fig. 1. Schematic of Several Multisegment Worm Programs. 

programs was simplified by the use 
of  a rich but fairly homogeneous 
computing environment at the Xerox 
Palo Alto Research Center. This in- 
cludes over 100 Alto computers [10], 
each connected to an Ethernet local 
network [4, 6]. In addition, there is a 
diverse set of  specialized network 
servers, including file systems, print- 
ers, boot-servers, name-lookup serv- 
ers, and other utilities. The whole 
system is held together by the Pup 
architecture of  internetwork proto- 
cols [ 1 ]. 

Many of  the machines remain 
idle for lengthy periods, especially at 
night, when they regularly run a 
memory  diagnostic. Instead of  view- 
ing this environment as 100 indepen- 
dent machines connected to a net- 
work, we thought of  it as a 100-ele- 
ment multiprocessor, in search of  a 
program to run. There is a fairly 
straightforward set of  steps involved 
in building and running a worm with 
this set of  resources. 
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2.1 General Issues in 
Constructing a Worm Program 

Almost any program can be mod- 
ified to incorporate the worm mech- 
anisms; all of  the examples described 
below were written in BCPL for the 
Alto. There is, however, one very 
important  consideration: since the 
worm may arrive through the Eth- 
ernet at a host with no disk mounted 
in the drive, the program must not 
try to access the disk. More impor- 
tant, a user may have left a disk 
spinning in an otherwise idle ma- 
chine; writing on such a disk would 
be viewed as a profoundly antisocial 
act. 

Running a worm depends upon 
the cooperation of  many  different 
machine users, who must have some 
confidence in the judgment  of  those 
writing programs which may enter 
their machines. In our work with the 
Alto, we have been able to assure 
users that there is not even a disk 
driver included within any of  the 
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worm programs; thus, the risk to any 
spinning disk is no worse than the 
risk associated with leaving the disk 
in place while the memory diagnostic 
runs. We have yet to identify a single 
case in which a worm program tried 
to write on a local disk. 

It is feasible, of  course, for a pro- 
gram to access secondary storage 
available through the network, on 
one of  the file servers. 

2 . 2  S t a r t i n g  a W o r m  

A worm program is generally or- 
ganized with several components: 
some initialization code to run when 
it starts on the first machine; some 
initialization when it starts on any 

subsequent machine; the main pro- 
gram. The initial program can be 
started in a machine by any of  the 
standard methods, including loading 
via the operating system or booting 
from a network boot-server. 

2 . 3  L o c a t i n g  O t h e r  I d l e  

M a c h i n e s  

T h e  f i r s t  t a s k  o f  a w o r m  i s  t o  f i l l  

out its full complement of  segments; 
to do that, it must find some number 
of idle machines. To aid in this pro- 
cess, a very simple protocol was de- 
fined: a special packet format is used 
to inquire if a host is free. If  it is, the 
idle host merely returns a positive 
reply. These inquiries can be broad- 
cast to all hosts or transmitted to 
specific destinations. Since multiple 
worms might be competing for the 
same idle machines, we have tried to 
reduce confusion by using a series of  
specific probes addressed to individ- 

ual machines• As mentioned above, 
many of  the Altos run a memory 
diagnostic when otherwise unused; 
this program responds positively 
when asked if it is idle. 

Various alternative schemes can 
be used to determine which possible 
host to probe next when looking for' 
an additional segment• In practice, 
we have employed a very simple pro- 
cedure: a segment begins with its 
own local host number and simply 
works its way up through the address 
space. Figure 2, an Ethernet source- 
destination traffic matrix (similar to 
the one in [8]), illustrates the use of  
this procedure. The migrating worm 
shows up amid the other network 
traffic with a "staircase" effect. A 
segment sends packets to successive 
hosts until finding one which is idle; 
at that point the program is copied 
to the new segment, and this host 
begins probing for the next segment. 

S o u r c e  h o s t  n u m b e r  ( o c t a l )  
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2.4 Booting an Idle Machine 
An idle machine can be located 

through the Ethernet, but there is 
still no way in which an Alto can be 
forced to restart through the net- 
work. By design, it is not possible to 
reach in and wrench away control 
from a running program; instead, the 
machine must willingly accept a re- 
quest to restart, either by booting 
from its local disk or through the 
network. 

After finding an idle machine, a 
worm segment then asks it to go 
through the standard network boot 
procedure. In this case, however, the 
specified source for the new program 
is the worm segment itself. Thus, we 
have this sequence: 
(1) Existing segment asks if  a host 

is idle. 
(2) The host answers that it is. 
(3) The existing segment asks the 

new host to boot through the 
network, from the segment. 

(4) The newcomer uses the stan- 
dard Pup procedures for re- 
questing a boot file [1]. 

(5) The file transfer protocol is 
used to transfer the worm pro- 
gram to the newcomer. 

In general, the program sent to a 
new segment is just a copy of  the 
program currently running in the 
worm; this makes it easy to transfer 
any dynamic state information into 
new segments. But the new segment 
first executes a piece of  initialization 
code, allowing it to reestablish any 
important machine-dependent state 
(for example, the number  of  the host 
on which it is running). 

2.5 Intra-Worm Communication- 
The Need for MultidestinaUon 
Addressing 

All segments of  the worm must 
stay in communication, in order to 
know when one of  their members  
has departed. In our experiments, 
each segment had a full model of  its 
parent w o r m - - a  list of  all other seg- 
ments. This is a classic situation in 
which one host wants to send some 
information to a specified collection 
of  hos ts - -what  is known as multides- 
tination addressing or multicasting 
(also called group addressing) [2, 5]. 
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Unfortunately, the experimental 
Ethernet design does not directly 
support any explicit form of  multi- 
casting. There are, however, several 
alternatives available [6]: 

( l)  Pseudo-multicast 11): An 
unused physical host number  can be 
set aside as a special logical group 
address, and all participants in the 
group set their host ID to this value. 
This is a workable approach (used in 
some existing programs), but does 
require advance coordination. In ad- 
dition, it consumes one host ID for 
each worm. 

(2) Brute force multicast: A 
copy of  the information is sent to 
each of  the group's other members. 
This is one of  the techniques which 
was used with the worms: each seg- 
ment  periodically sends its status to 
all other segments. 

The latter approch does require 
sending n*(n - 1) packets for each 
update; other techniques reduce the 
total number  of  packets which must 
be sent. Many of  the worms, how- 
ever, were actually quite small, re- 
quiring ordy three or four machines 
to ensure that they would not die 
when one machine was lost. In these 
cases, the explicit multicast was very 
satisfactory. When an application 
needs a substantial number  of  ma- 
chines, they can be obtained with 
one large worm or with a set of  co- 
operating smaller worms. 

This state information being ex- 
changed is used by each indepen- 
dent segment to run an algorithm 
similar to the one for updating rout- 
ing tables in store-and-forward 
packet-switched networks and inter- 
networks: if  a host is not heard from 
after some period of  time, it is pre- 
sumed dead and eliminated from the 
table. The remaining segments then 
cooperate to give one machine re- 
sponsibility for finding a new seg- 
ment, and the process continues. 

2.6 Releasing a Machine 
When a segment of  a worm is 

finished with a machine, it needs to 
return that machine to an idle state. 
This is very straightforward: the seg- 
ment invokes the standard network 
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boot procedure to reload the memory  
diagnostic program, that test is re- 
sumed, and the machine is again 
available as an idle machine for later 
reuse. 

This approach does result in 
some unfortunate behavior should a 
machine crash, either while running 
the segment or while trying to reboot. 
With no program running, the ma- 
chine cannot access the network and, 
as we saw, there is no way to reach 
in from the net to restart it. The 
result is a stopped machine, inacces- 
sible to the worm. The machine is 
still available, of  course, to the first 
user who walks up it it. 

3. A Key Problem: Controlling a 
Worm 

No, Mr. Sullivan, we can't  stop it! There 's  
never been a worm with that tough a head or 
that long a tail! It's building itself, don' t  you 
understand? Already it's passed a billion bits 
and it's still growing. It's the exact inverse of  
a phage- -whatever  it takes in, it adds to itself 
instead of  w i p i n g . . .  Yes, sir! I 'm quite aware 
that a worm of  that type is theoretically im- 
possible! But the fact stands, he's done it; and 
now it's so goddamn comprehensive that it 
can't  be killed. Not short of  demolishing the 
net! 

- - J o h n  Brunner, The Shockwave Rider 

We have only briefly mentioned 
the biggest problem associated with 
worm management:  controlling its 
growth while maintaining stable be- 
havior. 

Early in our experiments, we en- 
countered a rather puzzling situa- 
tion. A small worm was left running 
one night, just  exercising the worm 
control mechanism and using a small 
number  of  machines. When we re- 
turned the next morning, we found 
dozens of  machines dead, apparently 
crashed. I f  one restarted the regular 
memory  diagnostic, it would run 
very briefly, then be seized by the 
worm. The worm would quickly load 
its program into this new segment; 
the program would start to run and 
promptly crash, leaving the worm 
incomple te - -and  still hungrily look- 
ing for new segments. 

We have speculated that a copy 
of  the program became corrupted at 
some point in its migration, so that 
the initialization code would not run 
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properly; this made it impossible for 
the worm to enlist a new, healthy 
segment. In any case, some number  
of  worm segments were hidden 
away, desperately trying to replicate; 
every machine they touched, how- 
ever, would crash. Since the building 
we worked in was quite large, there 
was no hint of  which machines were 
still running; to complicate matters, 
some machines available for running 
worms were physically located in 
rooms which happened to be locked 
that morning so we had no way to 
abort them. At this point, one begins 
to imagine a scene straight out of  
Brunner 's novel - -workers  running 
around the building, fruitlessly 
trying to chase the worm and stop it 
before it moves somewhere else. 

Fortunately, the situation was not 
really that grim. Based upon an ill- 
formed but very real concern about 
such an occurrence, we had included 
an emergency escape within the 
worm mechanism. Using an inde- 
pendent control program, we were 
able to inject a very special packet 
into the network, whose sole job  was 
to tell every running worm to stop 
no matter  what else it was doing. All 
worm behavior ceased. Unfortu-  
nately, the embarassing results were 
left for all to see: 100 dead machines 
scattered around the building. 

This anecdote highlights the need 
for particular attention to the control 
algorithm used to maintain the 
worm. In general, this distributed al- 
gorithm involves processing incom- 
ing segment status reports and taking 
actions based upon them. On one 
hand, you may have a "high strung 
worm": at the least disturbance or 
with one lost packet, it may declare 
a segment gone and seek a new one. 
I f  the old segment is still there, it 
must later be expunged. Alterna- 
tively, some control procedures were 
too slow in responding to changes 
and were constantly operating at less 
than full strength. Some worms just 
withered and died, unable to 
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promptly act to rebuild their re- 
sources. 

Even w o r s e ,  h o w e v e r ,  w e r e  t he  

unstable worms, which suddenly 
seemed to grow out of  control, like 
the one described above. This mech- 
anism is not yet fully understood, but 
we have identified some circum- 
stances that can make a worm grow 
improperly. One factor is a classic 
failure mode in computer  commu- 
nications systems: the half-up link (or 
one-way path) where host A can 
communicate  with host B, but not 
the other way around. When infor- 
mation about the state of  the worm 
is being exchanged, this may result 
in two segments having inconsistent 
information. One host may think 
everything is fine, while another in- 
sists that a new segment is necessary 
and goes off  to find it. 

Should a network be partitioned 
for some time, a worm may also start 
to grow. Consider a two-segment 
worm, with the two segments run- 
ning on hosts at opposite ends of  an 
Ethernet cable, which has a repeater 
in the middle. I f  someone temporar-  
ily disconnects the repeater, each 
segment will assume that the other 
has died and seek a new partner. 
Thus, one two-part worm becomes 
two two-part worms. When the re- 
peater is turned back on, the whole 
system suddenly has too many  hosts 
committed to worm programs. Sim- 
ilarly, a worm which spans different 
networks may become partitioned if 
the intermedite gateway goes down 
for a while and then comes back up. 

In general, the stability of  the 
worm control algorithms was im- 
proved by exchanging more infor- 
mation, and by using further checks 
and error detection as the programs 
evaluated the information they were 
receiving. For example, if a segment 
found that it continually had trouble 
receiving status reports from other 
segments, it would conclude that it 
was the cause of  the trouble and 
thereupon self-destruct. 

Furthermore,  a special program 
was developed to serve as a "worm 
watcher" monitoring the local net- 
work. I f  a worm suddenly started 
growing beyond certain limits, the 
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worm watcher could automatically 
take steps to restrict the size of  the 
worm or shut it down altogether. In 
addition, the worm watcher main- 
tained a running log recording 
changes in the state of  individual 
segments. This information was in- 
valuable in later analyzing what 
might have gone wrong with a worm, 
when, and why. 

It should be evident from these 
comments  that the development of  
distributed worm control algorithms 
with low delay and stable behavior 
is a challenging area. Our efforts to 
understand the control procedures 
paid off, however: after the initial 
test period the worms ran flawlessly, 
until they were deliberately stopped. 
Some ran for weeks, and one was 
allowed to run for over a month. 

4. Applications Using the 
Worms 

In the previous sections we have 
described the procedures for starting 
and maintaining worms; here we 
look at some real worm programs 
and applications which have been 
built. 

4.1 The Existential Worm 
The simplest worm is one which 

runs a null p rogram-- i t s  sole pur- 
pose in life is to stay alive, even in 
the face of  lost machines. There is 
no substantive application program 
being run (as a slight embellishment, 
though, a worm segment can display 
a message on the machine where it 
is running). 

This simple worm was the first 
one we constructed, and it was used 
extensively as the test vehicle for 
the underlying control mechanisms. 
After the first segment was started, it 
would reach out, fred additional free 
machines, copy itself into them, and 
then just rest. Users were always free 
to reclaim their machines by booting 
them; when that happened, the cus- 
tomary worm procedure would find 
and incorporate a new segment. 

As a rule, though, this proce- 
dure would only force the worm to 
change machines at very infrequent 
intervals. Thus, the program was 
equipped with an independent self- 
destruct timer: after a segment ran 

March 1982 
Volume 25 
Number 3 



on a machine for some random in- 
terval, it would just allow itself to 
expire, returning the machine to an 
idle state. This dramatically in- 
creased the segment death rate, and 
exercised the worm recovery and 
replication procedures. 

4.2 The Billboard Worm 

With the fundamental  worm 
mechanism well in hand, we tried to 
enhance its impact. As we described, 
the Existential worm could display a 
small message; the "Billboard worm" 
advanced this idea one step further, 
distributing a full-size graphics im- 
age to many  different machines. Sev- 
eral available graphics programs 
used a standard representation for 
an image--pictures  either produced 
from a program or read in with a 
scanner. These images could then be 
stored on a network file server and 
read back through the network for 
display on a user's machine. 

Thus, the initial worm program 
was modified so that when first 
started, it could be asked to obtain 
an image from one of the file servers. 
From then on, the worm would 
spread this image, displaying it on 
screens throughout the building. 
Two versions of  the worm used dif- 
ferent methods to obtain the image 
in each new segment: the full image 
could be included in the program as 
it moved, or the new segment could 
be instructed to read an image di- 
rectly from one of  the network serv- 
ers. 

With a mechanical scanner to 
capture an image, the Billboard 
worm was used to distribute a 
"cartoon of  the d a y " - - a  greeting 
for workers as they arrived at their 
Altos. 

4 . 3  T h e  Alarm C l o c k  W o r m  

The two examples just described 
requ i red  no applicat ion-specif ic  
communication among the segments 
of  a worm; with more confidence in 
the system, we wanted to test this 
capability, particularly with an ap- 
plication that required high reliabil- 
ity. As a motivating example we 
chose the development of  a com- 
puter-based alarm clock which was 
not tied to a particular machine. This 
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program would accept simple re- 
quests through the network and sig- 
nal a user at some subsequent time; 
it was important that the service not 
make a mistake if a single machine 
should fail. 

The alarm clock was built on top 
of  a multimachine worm. A separate 
user program was written to make 
contact with a segment of  the worm 
and set the time for a subsequent 
wake-up. The signalling mechanism 
from the worm-based alarm clock 
was convoluted, but effective: the 
worm could reach out through the 
network to a server normally used 
for out-going terminal connections 
and then place a call to the user's 
telephone! 

This is an interesting application 
because it needs to maintain in each 
segment of  the worm a copy of the 
da tabase- - the  list of  wake-up calls 
to be placed. The strategy was quite 
simple: each segment was given the 
current list when it first came up. 
When a new request arrived, one 
machine took responsibility for ac- 
cepting the request and then propa- 
gating it to the other segments. When 
placing the call, one machine noti- 
fied the others that it was about to 
make the call, and once completed, 
notified the others that they could 
delete the entry. This was, however, 
primarily a demonstration of  a mul- 
timachine application, and not an 
attempt to fully explore the double- 
commit  protocols or other algorithms 
that maintain the consistency of  du- 
plicate databases. 

Also note that this was the first 
application in which it was important 
for a separate user program to be 
able to find the worm, in order to 
schedule a wake-up. In the absence 
of  an effective group-addressing 
technique, we used two methods: the 
user program could solicit a response 
by broadcasting to a well-known 
socket on all possible machines, or it 
could monitor all traffic looking for 
an appropriate status report from a 
worm segment. 

4.4  Mult imachine Animation 
Using a Worm 

So far, the examples described 
have used a distributed worm, with 
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no central control. One alternative 
way to use a worm, however, is as a 
robust set of  machines supporting a 
particular appl ica t ion--an  applica- 
tion that may itself be tied to a 
designated machine. An example 
which we have explored is the devel- 
oment  of  a multimachine system for 
real-time animation. In this case, 
there is a single con t ro l  n o d e  or mas-  

ter  which is controlling the compu- 
tation and playing back the anima- 
tion; the multiple machines in the 
worm are used in parallel to produce 
successive frames in the sequence, 
returning them to the control node 
for display. 

The master node initially uses the 
worm mechanisms to acquire a set of  
machines. In one approach, the mas- 
ter first determines how many ma- 
chines are desired and then recruits 
them with one large worm. As we 
just discussed, however, a single 
large worm may be slow to get 
started as it sequentially looks for 
idle machines, and it may be un- 
wieldy to maintain. Instead of  using 
one large worm to support the ani- 
mation, the master spawns one worm 
with instruction on how many other 
worms to gather. This starting worm 
launches some number  of  secondary 
worms, which in turn acquire their 
full complement of  segments (in this 
experiment, three segments per 
worm). Thus, one can very rapidly 
collect a set of  machines responding 
to the master; this collection of  ma- 
chines is still maintained by the in- 
dividual worm procedures. 

Each worm segment then be- 
comes a "graphics machine" with a 
pointer back to the master, and each 
reports in with an " I ' m  alive" mes- 
sage after it is created; the master 
itself is not part of  any worm. The 
master maintains the basic model of  
the three-dimensional image and 
controls the steps in the animation. 
To actually produce each frame, 
though, it only has to send the coor- 
dinates for each object; the "worker" 
machine then performs the hidden- 
line elimination and half-tone shad- 
ing, computing the finished frame. 
With this approach, all of  the worm 
segments work in parallel, perform- 
ing the computationally intensive 
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tasks. The master supplies descrip- 
tions of  the image to the segments 
and later calls upon them to return 
their result for display as the next 
image. 

The underlying worm mecha- 
nism is used to maintain the collec- 
tion of  graphics workers; if  a ma-  
chine disappears, the worm will find 
a new one and update the list held 
by the control program. The worm 
machines run a fairly simple pro- 
gram, with no specific knowledge 
about the animation itself. The sys- 
tem was tested with several exam- 
ples, including a walk through a cave 
and a collection of  bouncing and 
rotating cubes. 

4.5  A D iagnos t i c  Worm for the  
E the rne t  

The combination of  a central 
control machine and a multipart  
worm is also a useful way to run 
distributed diagnostics on many  ma- 
chines. We knew, for example, that 
Alto Ethernet interfaces showed 
some pair-wise variation in the error 
rates experienced when communi-  
cating with certain other machines. 
To fully test this, however, would 
require running a test program in all 
available mach ines - - a  terribly awk- 
ward task to start manually. 

The worm was the obvious tool. 
A control program was used to 
spawn a three-segment worm, which 
would then find all available ma- 
chines and load them with a test 
program; these machines would then 
check in with the central controller 
and prepare to run the specified mea- 

surements. Tests were conducted 
with as many  as 80, 90, or even 120 
machines. 

In testing pair-wise error rates, 
each machine had a list of  all other 
participants already loaded by the 
worm and registered with the control 
program. Each host would simply try 
to exchange packets with each other 
machine thought to be a part  of  the 
test. At the end of  the test each ma-  
chine would report its results to the 
control hos t - - thus  indicating which 
pairs seemed to have error-prone (or 
broken) interfaces. 

Figure 3 is the Ethernet source- 
destination traffic matrix produced 
during this kind of  worm-based test. 
To speed the process of  gathering all 
available machines, a three-segment 
worm would be spawned, and these 
segments could then work in parallel. 
Host 217 was the control Alto, and 
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it found the three segments for its 
worm on hosts between 0 and 20. 
Those three segments then located 
and initialized all of  the other partic- 
ipants. As described earlier, a simple 
linear search through the host ad- 
dress space is used by each segment 
to identify idle machines. To keep 
the multiple segments from initially 
pinging the same hosts, the starting 
point for each segment could be se- 
lected at intervals in the address 
space. Each segment does make a 
complete cycle through the address 
space, however, looking carefully for 
any idle machines. 

To avoid any unusual effects dur- 
ing the course of the test itself, the 
worm maintenance mechanism was 
turned offduring this period. I f  hosts 
had died, the worm could later be 
reenabled, in an effort to rebuild the 
collection of  hosts for a subsequent 
test. 

At the conclusion of  the tests, all 
of  the machines are released and al- 
lowed to return to their previous idle 
state--generally running the mem- 
ory diagnostic. These machines 
would boot that diagnostic through 
the network, from one of  the network 
boot file servers; 120 machines trying 
to do this at once, however, can cause 
severe problems. In particular, the 
boot server becomes a scarce re- 
source that may not be able to handle 
all of  the requests right away, and 
the error recovery in this very simple 
network-boot procedure is not fool- 
proof. Thus, all of  the participants in 
the measurements coordinate their 
departure at the end of  a test: each 
host waits for a quasi-random period 
before actually attempting to reboot 
from the network boot server. 

5. Some History: Multimachine 
Programs on the Arpanet 

The worm programs, of course, 
were not the first multimachine ex- 
periments. Indeed, some of  the worm 
facilities were suggested by the 
mechanisms used within the Arpanet 
or demonstrations built on top of 
that network: 

(1) The Arpanet routing algo- 
rithm itself is a large, multimachine 
distributed computation, as the In- 
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terface Message Processors (IMPs) 
continually exchange information 
among themselves. The computa- 
tions continue to run, adapting to the 
loss or arrival of  new IMPs. (Indeed, 
this is probably one of  the longest- 
running distributed computations.) 

(2) In a separate procedure, the 
Arpanet IMPs can be individually 
reloaded through the network, from 
a neighboring IMP. Thus, the IMP 
program migrates through the Ar- 
panet, as needed. 

(3) In late 1970, one of  the ear- 
liest multimachine applications using 
the Arpanet took place, sharing re- 
sources at both Harvard and MIT to 
support an aircraft carrier landing 
simulation. A PDP-10 at Harvard 
was used to produce the basic simu- 
lation program and 3-D graphics 
data. This material was then shipped 
to an MIT PDP-10, where the pro- 
grams could be run using the Evans 
& Sutherland display processor 
available at MIT. Final 2-D images 
produced there were shipped to a 
PDP-1 at Harvard, for display on a 
graphics terminal. (All of  this was 
done in the days before the regular 
Network Control Program (NCP) 
was running; one participant has re- 
marked that "it was several years 
before the NCPs were surmounted 
and we were again able to conduct a 
similar network graphics experi- 
ment.") 

(4) "McRoss" was a later mul- 
timachine simulation built on top of  
the NCP, spanning machine bound- 
aries. This program simulated air 
traffic control, with each host run- 
ning one part of the simulated air 
space. As planes moved in the sim- 
ulation, they were handed from one 
host to another. 

(5) One of  the first programs to 
move by itself through the Arpanet 
was the "Creeper," built by B. 
Thomas of  Bolt Beranek and New- 
man (BBN). It was a demonstration 
program under Tenex that would 
start to print a file, but then stop, 
find another Tenex, open a connec- 
tion, pick itself up and transfer to the 
other machine (along with its exter- 
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nal state, files, etc.), and then start 
running on the new machine. Thus, 
this was a relocatable program, using 
one machine at a time. 

(6) The Creeper program led to 
further work, including a version by 
R. Tomlinson that not only moved 
through the net, but also replicated 
itself at times. To complement this 
enhanced Creeper, the "Reaper" 
program moved through the net, 
trying to find copies of  Creeper and 
log them out. 

(7) The idea of  moving proc- 
esses from Creeper was added to the 
McRoss simulation to make "relo- 
catable McRoss." Not only were 
planes transferred among air spaces, 
but entire air space simulators could 
be moved from one machine to an- 
other. Once on the new machine, the 
simulator had to reestablish com- 
munication with the other parts of  
the simulation. During the move this 
part of  the simulator would be sus- 
pended, but there was no loss of  
simulator functionality. 

This summary is probably not 
complete or fully accurate, but it is 
an impressive collection of  distrib- 
uted computations, produced within 
or on top of  the Arpanet. Much of  
this work, however, was done in the 
early 70s; one participant recently 
commented, "It's hard for me to be- 
lieve that this all happened seven 
years ago." Since that time, we have 
not witnessed the anticipated blos- 
soming of  many distributed applica- 
tions using the long-haul capabilities 
of  the Arpanet. 

6. Conclusions 
We have the tools at hand to 

experiment with distributed compu- 
tations in their fullest form: dynam- 
ically allocating resources and mov- 
ing from machine to machine. Fur- 
thermore, local networks supporting 
relatively large numbers of  hosts now 
provide a rich environment for this 
kind of  experimentation. The basic 
worm programs described here dem- 
onstrate the ease with which these 
mechanisms can be explored; they 
also highlight many areas for further 
research. 
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